36 research outputs found

    A simple mean field equation for condensates in the BEC-BCS crossover regime

    Full text link
    We present a mean field approach based on pairs of fermionic atoms to describe condensates in the BEC-BCS crossover regime. By introducing an effective potential, the mean field equation allows us to calculate the chemical potential, the equation of states and the atomic correlation function. The results agree surprisingly well with recent quantum Monte Carlo calculations. We show that the smooth crossover from the bosonic mean field repulsion between molecules to the Fermi pressure among atoms is associated with the evolution of the atomic correlation function

    Quantum stochastic description of collisions in a canonical Bose gas

    Full text link
    We derive a stochastic process that describes the kinetics of a one-dimensional Bose gas in a regime where three body collisions are important. In this situation the system becomes non integrable offering the possibility to investigate dissipative phenomena more simply compared to higher dimensional gases. Unlike the quantum Boltzmann equation describing the average momentum distribution, the stochastic approach allows a description of higher-order correlation functions in a canonical ensemble. As will be shown, this ensemble differs drastically from the grand canonical one. We illustrate the use of this method by determining the time evolution of the momentum mode particle number distribution and the static structure factor during the evaporative cooling process.Comment: 4 pages, 4 figure

    Ultra--cold gases and the detection of the Earth's rotation: Bogoliubov space and gravitomagnetism

    Full text link
    The present work analyzes the consequences of the gravitomagnetic effect of the Earth upon a bosonic gas in which the corresponding atoms have a non--vanishing orbital angular momentum. Concerning the ground state of the Bogoliubov space of this system we deduce the consequences, on the pressure and on the speed of sound, of the gravitomagnetic effect. We prove that the effect on a single atom is very small, but we also show that for some thermodynamical properties the consequences scale as a non--trivial function of the number of particles.Comment: 4 page

    Solitons with Cubic and Quintic Nonlinearities Modulated in Space and Time

    Full text link
    This work deals with soliton solutions of the nonlinear Schroedinger equation with cubic and quintic nonlinearities. We extend the procedure put forward in a recent Letter and we solve the equation in the presence of linear background, and cubic and quintic interactions which are modulated in space and time. As a result, we show how a simple parameter can be used to generate brightlike or darklike localized nonlinear waves which oscillate in several distinct ways, driven by the space and time dependence of the parameters that control the trapping potential, and the cubic and quintic nonlinearities.Comment: 4 pages, 6 figures; version to appear in PRE, R

    Collective excitations of a degenerate gas at the BEC-BCS crossover

    Full text link
    We study collective excitation modes of a fermionic gas of 6^6Li atoms in the BEC-BCS crossover regime. While measurements of the axial compression mode in the cigar-shaped trap close to a Feshbach resonance confirm theoretical expectations, the radial compression mode shows surprising features. In the strongly interacting molecular BEC regime we observe a negative frequency shift with increasing coupling strength. In the regime of a strongly interacting Fermi gas, an abrupt change in the collective excitation frequency occurs, which may be a signature for a transition from a superfluid to a collisionless phase.Comment: Feshbach resonance position updated, few minor change

    Spatial and Temporal Noise Spectra of Spatially Extended Systems with Order-Disorder Phase Transitions

    Full text link
    The noise power spectra of spatially extended dynamical systems are investigated, using as a model the Complex Ginzburg-Landau equation with a stochastic term. Analytical and numerical investigations show that the spatial spectra of the ordered state are similar to Bose-Einstein distribution, showing 1/k^2 asymptotics in the long wavelength limit. The temporal noise spectra of the ordered state are obtained of 1/^alpha form, where alpha=2-D/2 with D the spatial dimension of the system.Comment: to be printed in International Journal of Bifurcation and Chao

    Fermi liquid near Pomeranchuk quantum criticality

    Full text link
    We analyze the behavior of an itinerant Fermi system near a charge nematic(n=2) Pomeranchuk instability in terms of the Landau Fermi liquid (FL) theory. The main object of our study is the fully renormalized vertex function ΓΩ\Gamma\Omega, related to the Landau interaction function. We derive ΓΩ\Gamma^\Omega for a model case of the long-range interaction in the nematic channel. Already within the Random Phase Approximation (RPA), the vertex is singular near the instability. The full vertex, obtained by resumming the ladder series composed of the RPA vertices, differs from the RPA result by a multiplicative renormalization factor ZΓZ_\Gamma, related to the single-particle residue ZZ and effective mass renormalization m/mm^*/m. We employ the Pitaevski-Landau identities, which express the derivatives of the self-energy in terms of ΓΩ\Gamma^\Omega, to obtain and solve a set of coupled non-linear equations for ZΓZ_\Gamma, ZZ, and m/mm^*/m. We show that near the transition the system enters a critical FL regime, where ZΓZ(1+gc,2)1/2Z_\Gamma \sim Z \propto (1 + g_{c,2})^{1/2} and m/m1/Zm^*/m \approx 1/Z, where gc,2g_{c,2} is the n=2n=2 charge Landau component which approaches -1 at the instability. We construct the Landau function of the critical FL and show that all but gc,2g_{c,2} Landau components diverge at the critical point. We also show that in the critical regime the one-loop result for the self-energy Σ(K)dPG(P)D(KP)\Sigma (K) \propto \int dP G(P) D (K-P) is asymptotically exact if one identifies the effective interaction DD with the RPA form of ΓΩ\Gamma^\Omega.Comment: References added, discussion of the dynamic vertex is modifie

    Effect of interactions on vortices in a nonequilibrium polariton condensate

    Get PDF
    We demonstrate the creation of vortices in a macroscopically occupied polariton state formed in a semiconductor microcavity. A weak external laser beam carrying orbital angular momentum (OAM) is used to imprint a vortex on the condensate arising from the polariton optical parametric oscillator (OPO). The vortex core radius is found to decrease with increasing pump power, and is determined by polariton-polariton interactions. As a result of OAM conservation in the parametric scattering process, the excitation consists of a vortex in the signal and a corresponding antivortex in the idler of the OPO. The experimental results are in good agreement with a theoretical model of a vortex in the polariton OPO

    Critical points in a relativistic bosonic gas induced by the quantum structure of spacetime

    Full text link
    It is well known that phase transitions arise if the interaction among particles embodies an attractive as well as a repulsive contribution. In this work it will be shown that the breakdown of Lorentz symmetry, characterized through a deformation in the relation dispersion, plus the bosonic statistics predict the emergence of critical points. In other words, in some quantum gravity models the structure of spacetime implies the emergence of critical points even when no interaction among the particle has been considered.Comment: 5 pages, no figure

    Self Consistent Random Phase Approximation and the restoration of symmetries within the three-level Lipkin model

    Full text link
    We show that it is possible to restore the symmetry associated with the Goldstone mode within the Self Consistent Random Phase Approximation (SCRPA) applied to the three-level Lipkin model. We determine one and two-body densities as very convergent expansions in terms of the generators of the RPA basis. We show that SCRPA excitations correspond to the heads of some rotational bands in the exact spectrum. It turns out that the SCRPA eigenmodes for N=2 coincide with exact solutions, given by the diagonalisation procedure
    corecore